DIFFERENTIAL GEOMETRIC STRUCTURES ON PRINCIPAL TOROIDAL BUNDLES

RY

DAVID E. BLAIR, GERALD D. LUDDEN AND KENTARO YANO

ABSTRACT. Under an assumption of regularity a manifold with an f-structure satisfying certain conditions analogous to those of a Kähler structure admits a fibration as a principal toroidal bundle over a Kähler manifold. In some natural special cases, additional information about the bundle space is obtained. Finally, curvature relations between the bundle space and the base space are studied.

Let M^{2n+s} be a C^{∞} manifold of dimension 2n+s. If the structural group of M^{2n+s} is reducible to $U(n)\times O(s)$, then M^{2n+s} is said to have an f-structure of rank 2n. If there exists a set of 1-forms $\{\eta^1, \dots, \eta^s\}$ satisfying certain properties described in §1, then M^{2n+s} is said to have an f-structure with complemented frames. In [1] it was shown that a principal toroidal bundle over a Kähler manifold with a certain connection has an f-structure with complemented frames and $d\eta^1 = \dots = d\eta^s$ as the fundamental 2-form. On the other hand, the following theorem is proved in §2 of this paper.

Theorem 1. Let M^{2n+s} be a compact connected manifold with a regular normal f-structure. Then M^{2n+s} is the bundle space of a principal toroidal bundle over a complex manifold $N^{2n} (= M^{2n+s}/\mathbb{M})$. Moreover, if M^{2n+s} is a K-manifold, then N^{2n} is a Kähler manifold.

After developing a theory of submersions in §3, we discuss in §4 further properties of this fibration in the cases where $d\eta^x = 0$, $x = 1, \dots, s$ and $d\eta^x = \alpha^x F$, F being the fundamental 2-form of the /-structure.

Finally in $\S 5$ we study the relation between the curvature of M^{2n+s} and N^{2n} .

Since $U(n) \times O(s) \subset O(2n+s)$, M^{2n+s} is a new example of a space in the class provided by Chern in his generalization of Kähler geometry [4]. S. I. Goldberg's paper [5] also suggests the study of framed manifolds as bundle spaces over Kähler manifolds with parallelisable fibers.

1. Normal f-structures. Let M^{2n+s} be a 2n+s-dimensional manifold with an f-structure. Then there is a tensor field f of type (1, 1) on M^{2n+s} that is of rank

Received by the editors January 10, 1972 and, in revised form, April 18, 1972. AMS (MOS) subject classifications (1969). Primary 5372; Secondary 5730, 5380. Key words and phrases. Principal toroidal bundles, f-structures, Kähler manifolds.

2n everywhere and satisfies

(1)
$$f^3 + f = 0.$$

If there exist vector fields ξ_x , $x = 1, \dots, s$ on M^{2n+s} such that

(2)
$$f\xi_x = 0, \quad \eta^x(\xi_y) = \delta_y^x, \quad \eta^x \circ f = 0, \quad f^2 = -1 + \eta^y \otimes \xi_y,$$

we say M^{2n+s} has an f-structure with complemented frames. Further we say that the f-structure is normal if

$$[f,f] + d\eta^{x} \otimes \xi_{x} = 0,$$

where [f, f] is the Nijenhuis torsion of f. It is a consequence of normality that $[\xi_x, \xi_y] = 0$. Moreover it is known that there exists a Riemannian metric g on M^{2n+s} satisfying

(4)
$$g(X, Y) = g(fX, fY) + \sum_{x} \eta_{x}(X)\eta_{x}(Y),$$

where X and Y are arbitrary vector fields on M^{2n+s} . Define a 2-form F on M^{2n+s} by

$$(5) F(X, Y) = g(X, fY).$$

A normal f-structure for which F is closed will be called a K-structure and a K-structure for which there exist functions $\alpha^1, \dots, \alpha^s$ such that $\alpha^x F = d\eta^x$ for $x = 1, \dots, s$ will be called an S-structure.

Lemma 1. If M^{2n+s} , n > 1, has an S-structure, then the α^x are all constant.

Proof. $\alpha^x F = d\eta^x$ so that $d\alpha^x \wedge F = 0$ since dF = 0. However $F \neq 0$ so $d\alpha^x = 0$ and hence α^x is constant.

The special case where the α^x are all 0 or all 1 has been studied in [1]. Also, the following were proved.

Lemma 2. If M^{2n+s} has a K-structure, the ξ_x are Killing vector fields and $d\eta^x(X, Y) = -2(\widehat{\nabla}_Y \eta^x)(X)$. Here $\widehat{\nabla}$ is the Riemannian connection of g on M^{2n+s} .

From Lemma 2, we can see that in the case of an S-structure $\alpha^x f Y = -2 \tilde{\nabla}_Y \xi_x$.

Lemma 3. If M^{2n+s} has a K-structure, then

$$(\widetilde{\vee}_X F)(Y, Z) = \frac{1}{2} \sum_{x} (\eta^x(Y) d\eta^x(fZ, X) + \eta^x(Z) d\eta^x(X, fY)).$$

2. Proof of Theorem 1. In Chapter 1 of [9] R. S. Palais discusses quotient manifolds defined by foliations. In particular, a cubical coordinate system $\{U, (u^1, \dots, u^n)\}$ on an *n*-dimensional manifold is said to be *regular* with respect

to an involutive m-dimensional distribution if $\{\partial(m)/\partial u^x\}$, $x=1,\dots,m$, is a basis of \mathbb{M}_m for every $m\in U$ and if each leaf of \mathbb{M} intersects U in at most one m-dimensional slice of $\{U,(u^1,\dots,u^n)\}$. We say \mathbb{M} is regular if every leaf of \mathbb{M} intersects the domain of a cubical coordinate system which is regular with respect to \mathbb{M} .

In [9] it is proven that if \mathbb{M} is regular on a compact connected manifold M, then every leaf of \mathbb{M} is compact and that the quotient M/\mathbb{M} is a compact differentiable manifold. Moreover the leaves of \mathbb{M} are the fibers of a C^{∞} fibering of M with base manifold M/\mathbb{M} and the leaves are all C^{∞} isomorphic.

We now note that the distribution $\mathbb M$ spanned by the vector fields ξ_1, \cdots, ξ_s of a normal f-structure is involutive. In fact we have by normality

$$0 = [f, f](\xi_{y}, \xi_{z}) + d\eta^{x}(\xi_{y}, \xi_{z})\xi_{x} = f^{2}[\xi_{y}, \xi_{z}] - \eta^{x}([\xi_{y}, \xi_{z}])\xi_{x} = -[\xi_{y}, \xi_{z}]$$

from which it easily follows that $\mathbb M$ is involutive. If $\mathbb M$ is regular and the vector fields $\mathcal E_x$ are regular we say that the normal /-structure is regular. Thus from the results of [9] we see that if M^{2n+s} is compact and has a regular normal /-structure, then M^{2n+s} admits a C^{∞} fibering over the (2n)-dimensional manifold $N^{2n} = M^{2n+s}/\mathbb M$ with compact, C^{∞} isomorphic, fibers.

Since the distribution $\mathbb M$ of a regular normal /-structure consists of s 1-dimensional regular distributions each given by one of the ξ_x 's, if M^{2n+s} is compact, the integral curves of ξ_x are closed and hence homeomorphic to circles S^1 . The ξ_x 's being independent and regular show that the fibers determined by the distribution $\mathbb M$ are homeomorphic to tori T^s .

Now define the period function λ_X of a regular closed vector field X by

$$\lambda_X(m) = \inf\{t > 0 | (\exp tX)(m) = m\}.$$

For brevity we denote λ_{ξ_x} by λ_x . W. M. Boothby and H. C. Wang [3] proved that $\lambda_x(m)$ is a differentiable function on M^{2n+s} . We now prove the following

Lemma 4. The functions λ_x are constants.

The proof of the lemma makes use of the following theorem of A. Morimoto [7].

Theorem (Morimoto [7]). Let M be a complex manifold with almost complex structure tensor J. Let X be an analytic vector field on M such that X and JX are closed regular vector fields. Set $p(m) = \lambda_X(m) + \sqrt{-1}\lambda_{JX}(m)$. Then p is a holomorphic function on M.

Proof of lemma. For s even,

$$\widetilde{f} = f + \sum_{i=1}^{s/2} (\eta^{i} \otimes \xi_{i^{*}} - \eta^{i^{*}} \otimes \xi_{i}), \quad i = 1, \dots, s/2, i^{*} = i + s/2,$$

defines a complex structure on $M=M^{2n+s}$ (cf. [6]). It is clear from the normality that ξ_x is a holomorphic vector field. For s odd, a normal almost contract structure (\widetilde{f} , ξ_0 , η_0) is defined where ξ_0 and η_0 generically denote one of the ξ_x 's and η_x 's respectively [6]. It is well known that this structure induces a complex structure J on $M=M^{2n+s}\times S^1$. Moreover, by the normality, ξ_0 considered as a vector field on M is analytic. Then $p(m)=\lambda_x(m)+\sqrt{-1}\lambda_x(m)$ or $p((m,q))=\lambda_{\xi_0}((m,q))+\sqrt{-1}\lambda_{J\xi_0}((m,q))$, $q\in S^1$, for s odd, is a holomorphic function on M by the theorem of Morimoto. Since M is compact, p must be constant. Thus λ_x is constant on M and since $\lambda_x((m,q))=\lambda_x(m)$, λ_x is constant on M^{2n+s} .

Let $C_x = \lambda_x(m)$, then the circle group S_x^1 of real numbers modulo C_x acts on M^{2n+s} by $(t,m) \to (\exp t\xi_x)(m)$, $t \in R$. Now the only element in $T^s = S_1^1 \times \cdots \times S_s^1$ with a fixed point in M^{2n+s} is the identity and since M^{2n+s} is a fiber space over N^{2n} , we need only show that M^{2n+s} is locally trivial [3]. Let $\{U_\alpha\}$ be a cover of N^{2n} such that each U_α is the projection of a regular neighborhood on M^{2n+s} and let $S_\alpha\colon U_\alpha \to M^{2n+s}$ be the section corresponding to $u^1 = \text{constant}$, \dots , $u^s = \text{constant}$. Then the maps $\Psi_\alpha\colon U_\alpha \times T^s \to M^{2n+s}$ defined by

$$\Psi_{\alpha}(p, t_1, \dots, t_s) = (\exp(t_1 \xi_1 + \dots + t_s \xi_s))(s_{\alpha}(p))$$

give coordinate maps for M^{2n+s} .

Finally (cf. [1]) we note that $\gamma = (\eta^1, \dots, \eta^s)$ defines a Lie algebra valued connection form on M^{2n+s} and we denote by $\widetilde{\pi}$ the horizontal lift with respect to γ . Define a tensor field J of type (1, 1) on N^{2n} by $JX = \pi_* f \widetilde{\pi} X$. Then, since the distribution $\mathcal L$ complementary to $\mathcal M$ is horizontal with respect to γ ,

$$J^{2}X = \pi_{\star} / \widetilde{\pi} \pi_{\star} / \widetilde{\pi} X = \pi_{\star} / \widetilde{\pi} X = -X.$$

Moreover

$$\begin{split} [J,J](X,Y) &= -[X,Y] + [\pi_*/\widetilde{\pi}X,\pi_*/\widetilde{\pi}Y] - \pi_*/\widetilde{\pi}[\pi_*/\widetilde{\pi}X,Y] - \pi_*/\widetilde{\pi}[X,\pi_*/\widetilde{\pi}Y] \\ &= -\pi_*[\widetilde{\pi}X,\widetilde{\pi}Y] + \pi_*[/\widetilde{\pi}X,/\widetilde{\pi}Y] - \pi_*/\widetilde{\pi}\pi_*[/\widetilde{\pi}X,\widetilde{\pi}Y] - \pi_*/\widetilde{\pi}\pi_*[\widetilde{\pi}X,/\widetilde{\pi}Y] \\ &= \pi_*(/^2[\widetilde{\pi}X,\widetilde{\pi}Y] - \eta^*([\widetilde{\pi}X,\widetilde{\pi}Y]),\xi_x) + \pi_*[/\widetilde{\pi}X,/\widetilde{\pi}Y] - \pi_*/[/\widetilde{\pi}X,\widetilde{\pi}Y] - \pi_*/[\widetilde{\pi}X,\widetilde{\pi}Y] - \pi_*/[\widetilde{\pi}X,\widetilde{\pi}Y] \\ &= \pi_*([f,f](\widetilde{\pi}X,\widetilde{\pi}Y) + d\eta^*(\widetilde{\pi}X,\widetilde{\pi}Y)\xi_x) \\ &= 0. \end{split}$$

Thus we see that N^{2n} is a complex manifold.

We define an Hermitian metric G on N^{2n} by $G(X, Y) = g(\widetilde{\pi}X, \widetilde{\pi}Y)$. Indeed $G(JX, JY) = g(\widetilde{\pi}\pi_*/\widetilde{\pi}X, \widetilde{\pi}\pi_*/\widetilde{\pi}Y) = g(f\widetilde{\pi}X, f\widetilde{\pi}Y)$ $= g(\widetilde{\pi}X, \widetilde{\pi}Y) - \sum_{i} \eta^*(\widetilde{\pi}X) \eta^*(\widetilde{\pi}Y) = G(X, Y).$

Now define the fundamental 2-form Ω by $\Omega(X, Y) = G(X, JY)$. Then for vector fields X, Y on M^{2n+s} we have

$$\pi^*\Omega(\tilde{X},\tilde{Y}) = \Omega(\pi_*\tilde{X},\pi_*\tilde{Y}) = G(\pi_*\tilde{X},J\pi_*\tilde{Y})$$

$$= g(\overset{\sim}{\pi}\pi_*\tilde{X},\overset{\sim}{\pi}J\pi_*\tilde{Y}) = g(-f^2\tilde{X},\overset{\sim}{\pi}\pi_*f\tilde{Y}) = g(-f^2\tilde{X},f\tilde{Y}) = g(\tilde{X},f\tilde{Y}) = F(\tilde{X},\tilde{Y}).$$

Thus $F=\pi^*\Omega$. If now dF=0, then $0=d\pi^*\Omega=\pi^*d\Omega$ and hence $d\Omega=0$ since π^* is injective. Thus the manifold N^{2n} is Kählerian.

3. Submersions. Let $\widetilde{\nabla}$ denote the Riemannian connection of g on M^{2n+s} . Since the ξ_x 's are Killing, g is projectable to the metric G on N^{2n} . Then following [8] the horizontal part of $\widetilde{\nabla}_{\pi X} \widetilde{\pi} Y$ is $\widetilde{\pi} \nabla_X Y$ where as we shall see ∇ is the Riemannian connection of G. Now for an S-structure we have seen that $\widetilde{\nabla}_X \xi_x = \alpha^x/\widetilde{X}$ for any vector field \widetilde{X} on M^{2n+s} . By normality f is projectable $(\mathfrak{L}_{\xi_X} f = 0)$ and the α^x 's are constants; thus we can write

$$\nabla_{\widetilde{\pi}X} \xi_x = -\widetilde{\pi} H_x X,$$

where H_x is a tensor field of type (1, 1) on N^{2n} . We can now find the vertical part of $\widetilde{\nabla}_{\sim} \widetilde{\pi} Y$.

$$g(\overset{\sim}{\nabla}_{\widetilde{\pi}X}\widetilde{\pi}Y,\,\xi_x)=-\,g(\widetilde{\pi}Y,\overset{\sim}{\nabla}_{\widetilde{\pi}X}\xi_x)=g(\widetilde{\pi}Y,\,\widetilde{\pi}H_xX).$$

Thus we can write

$$\nabla_{\pi X} \widetilde{\pi} Y = \widetilde{\pi} \nabla_X Y + b^x(X, Y) \xi_x$$

where each h^x is a tensor field of type (0, 2) and

$$G(H_{x}X, Y) = b^{x}(X, Y).$$

Lemma 5. $\mathcal{L}_{\xi_x}(\widetilde{\boldsymbol{n}}X) = 0$ for any vector field X on N^{2n} , where \mathcal{L}_{ξ_x} is the operator of Lie differentiation in the ξ_x direction.

Proof. We have that $g(\xi_y, \tilde{\pi}X) = 0$ for $y = 1, \dots, s$. By Lemma 2, the ξ_x are Killing, that is $\xi_x g = 0$. From the normality of f, $\xi_x \xi_y = 0$. Hence, we have that

$$g(\xi_{y}, \vartheta_{\xi_{x}}(\widetilde{\pi}X)) = 0, \quad y = 1, \dots, s,$$

and so $\mathcal{Q}_{\xi_{\pi}}(\widetilde{\pi}X)$ is horizontal. However,

$$\pi_*\mathcal{Q}_{\xi_{\boldsymbol{x}}}(\widehat{\boldsymbol{\pi}}\boldsymbol{X}) = \pi_*[\boldsymbol{\xi}_{\boldsymbol{x}}, \widehat{\boldsymbol{\pi}}\boldsymbol{X}] = [\pi_*\boldsymbol{\xi}_{\boldsymbol{x}}, \pi_*\widehat{\boldsymbol{\pi}}\boldsymbol{X}] = 0$$

and so $\mathcal{L}_{\xi_x}(\widetilde{\pi}X)$ is vertical.

Using the lemma we see that $\nabla_{\xi_x} \widetilde{\pi} X = \nabla_{\pi_X} \xi_x$ for any vector field X on N^{2n} . Since ξ_x is Killing, we have

$$0 = g(\overset{\sim}{\nabla}_{\pi X} \xi_x, \overset{\sim}{\pi} X) = -g(\xi_x, \overset{\sim}{\nabla}_{\pi X} \overset{\sim}{\pi} X) = -g(\xi_x, h^y(X, X) \xi_y) = -h^x(X, X)$$

for all X. That is to say $b^x(X, Y) = -b^x(Y, X)$ for all X and Y. Now we have

$$0 = \overset{\sim}{\nabla}_{\widetilde{\mathcal{T}}X}(\widetilde{\pi}Y) - \overset{\sim}{\nabla}_{\widetilde{\mathcal{T}}Y}(\widetilde{\pi}X) - [\widetilde{\pi}X, \widetilde{\pi}Y]$$

$$= \overset{\sim}{\pi}(\nabla_{X}Y - \nabla_{Y}X - [X, Y]) + (b^{x}(X, Y) - b^{x}(Y, X) + d\eta^{x}(\widetilde{\pi}X, \widetilde{\pi}Y))\xi_{x}$$

$$= \overset{\sim}{\pi}(\nabla_{Y}Y - \nabla_{Y}X - [X, Y]) + (2b^{x}(X, Y) + d\eta^{x}(\widetilde{\pi}X, \widetilde{\pi}Y))\xi_{x},$$

where we have used the following lemma.

Lemma 6.
$$[\overset{\sim}{\pi}X,\overset{\sim}{\pi}Y] = \overset{\sim}{\pi}[X,Y] - d\eta^x(\overset{\sim}{\pi}X,\overset{\sim}{\pi}Y)\xi_x$$
.

Proof. Since $\pi_*[\widetilde{\pi}X, \widetilde{\pi}Y] = [\pi_*\widetilde{\pi}X, \pi_*\widetilde{\pi}Y] = [X, Y]$ we see that $\widetilde{\pi}[X, Y]$ is the horizontal part of $[\widetilde{\pi}X, \widetilde{\pi}Y]$. By Lemma 2, we have

$$d\eta^{\mathbf{x}}(\overset{\sim}{\eta}X,\overset{\sim}{\eta}Y) = -2(\overset{\sim}{\nabla}_{\overset{\sim}{\eta}Y}\eta^{\mathbf{x}})(\overset{\sim}{\eta}X) = -2g(\overset{\sim}{\nabla}_{\overset{\sim}{\eta}Y}\xi_{\mathbf{x}},\overset{\sim}{\eta}X) = +2g(\xi_{\mathbf{x}},\overset{\sim}{\nabla}_{\overset{\sim}{\eta}Y}\overset{\sim}{\eta}X).$$

Also
$$d\eta^x(\widehat{\pi}X,\widehat{\pi}Y) = -d\eta^x(\widehat{\pi}Y,\widehat{\pi}X) = -2g(\xi_x,\widehat{\nabla}_{\widehat{\pi}X}\widehat{\pi}Y)$$
. Thus

$$2d\eta^{\mathbf{x}}(\widetilde{\pi}X,\widetilde{\pi}Y) = 2g(\xi_{\mathbf{x}}, \widetilde{\nabla}_{\widetilde{\pi}Y}\widetilde{\pi}X - \widetilde{\nabla}_{\widetilde{\pi}X}\widetilde{\pi}Y)$$

or

$$d\eta^x(\widetilde{\pi}X, \widetilde{\pi}Y)\xi_x = \sum_x g(\xi_x, [\widetilde{\pi}X, \widetilde{\pi}Y])\xi_x = \text{vertical part of } [\widetilde{\pi}X, \widetilde{\pi}Y].$$

From (6) we see $\nabla_X Y - \nabla_Y X - [X, Y] = 0$ and $b^x(X, Y) = -\frac{1}{2} d\eta^x (\widetilde{\pi} X, \widetilde{\pi} Y)$. Furthermore,

$$XG(Y,Z) = \overset{\sim}{\pi} X g(\overset{\sim}{\pi} Y, \overset{\sim}{\pi} Z) = g(\overset{\sim}{\nabla}_{\overset{\sim}{\pi} X} \overset{\sim}{\pi} Y, \overset{\sim}{\pi} Z) + g(\overset{\sim}{\pi} Y, \overset{\sim}{\nabla}_{\overset{\sim}{\pi} X} \overset{\sim}{\pi} Z)$$
$$= g(\overset{\sim}{\pi} \nabla_{X} Y, \overset{\sim}{\pi} Z) + g(\overset{\sim}{\pi} Y, \overset{\sim}{\pi} \nabla_{X} Z) = G(\nabla_{X} Y, Z) + G(Y, \nabla_{X} Z).$$

Thus, we have the following proposition.

Proposition. ∇ is the Riemannian connection of G on N^{2n} .

4. The S-structure case. Let M^{2n+s} , n>1, be a manifold with an S-structure. Then, as we have seen, there exist constants α^x , $x=1,\dots,s$, such that $\alpha^x F=d\eta^x$. We will consider two cases, namely $\Sigma_x(\alpha^x)^2=0$ and $\Sigma_x(\alpha^x)^2\neq 0$.

In the first case each $d\eta_x = 0$ and by Lemma 2 each ξ_x is Killing, hence the

regular vector fields ξ_1, \dots, ξ_s are parallel on M^{2n+s} . Moreover the complementary distribution $\mathcal L$ (projection map is $-f^2=I-\eta^x\otimes \xi_x$) is parallel. If now the distribution $\mathcal L$ is also regular, we have a second fibration of M^{2n+s} with fibers the integral submanifolds L^{2n} of $\mathcal L$ and base space an s-dimensional manifold N^s . Thus by a result of A. G. Walker [10] we see that although M^{2n+s} is not necessarily reducible (even though it is locally the product of N^{2n} and T^s) it is a covering space of $N^{2n} \times N^s$ and is covered by $L^{2n} \times T^s$. In summary we have

Theorem 2. If M^{2n+s} is as in Theorem 1 with $d\eta^x = 0$, $x = 1, \dots, s$, and \mathcal{L} regular, then M^{2n+s} is a covering space of $N^{2n} \times N^s$, where N^s is the base space of the fibration determined by \mathcal{L} .

Now as in Theorem 1, since the ξ_x 's, $x=1,\dots,s$, are regular, we could fibrate by any s-t of them to obtain a fibration of M^{2n+s} as a principal T^{s-t} bundle over a manifold P^{2n+t} . By normality the remaining t vector fields are projectable to P^{2n+t} . Moreover they are regular on P^{2n+t} ; for if not, their integral curves would be dense in a neighborhood U over which M^{2n+s} is trivial with compact fiber T^{s-t} contradicting their regularity on M^{2n+s} . Thus P^{2n+t} is a principal T^t bundle over N^{2n} .

Theorem 3. If M^{2n+s} , n > 1, is as in Theorem 1 with $d\eta^x = \alpha^x F$ and $\sum_x (\alpha^x)^2 \neq 0$, then M^{2n+s} is a principal T^{s-1} bundle over a principal circle bundle P^{2n+1} over N^{2n} and the induced structure on P^{2n+1} is a normal contact metric (Sasakian) structure.

Proof. Without loss of generality we suppose $\alpha^s \neq 0$. Then fibrating as above by ξ_1, \dots, ξ_{s-1} we have that M^{2n+s} is a principal T^{s-1} bundle over a principal circle bundle P^{2n+1} over N^{2n} . Let $p: M^{2n+s} \to P^{2n+1}$ denote the projection map. By normality f, ξ_s, η^s are projectable, so we define ϕ, ξ, η on P^{2n+1} by

$$\phi X = p_* \int \widetilde{p} X, \quad \xi = p_* \xi_s, \quad \eta(X) = \eta^s(\widetilde{p} X)$$

where \widetilde{p} denotes the horizontal lift with respect to the connection $(\eta^1, \dots, \eta^{s-1})$ considered as a Lie algebra valued connection form as in the proof of Theorem 1. Then by a straight-forward computation we have

 $\eta(\xi) = 1$, $\phi \xi = 0$, $\eta \circ \phi = 0$, $\phi^2 = -I + \xi \otimes \eta$, $[\phi, \phi] + \xi \otimes d\eta = 0$, that is, (ϕ, ξ, η) is a normal almost contact structure on P^{2n+1} . Defining a metric \dot{g} by $\dot{g}(X, Y) = g(\tilde{p}X, \tilde{p}Y)$ we have $\dot{g}(X, \xi) = \eta(X)$ and $\dot{g}(\phi X, \phi Y) = \dot{g}(X, Y) - \eta(X)\eta(Y)$. Moreover setting $\Phi(X, Y) = \dot{g}(X, \phi Y)$ we obtain $F = p^*\Phi$. Thus since

$$d\eta^s = \alpha^s F$$
, $p^*\Phi = d\eta^s/\alpha^s$ and

$$\begin{split} \Phi(X,\,Y) &= g(\widetilde{p}\,X,\,\widetilde{p}\,\phi Y) = d\eta^s(\widetilde{p}\,X,\,\widetilde{p}\,Y)/\alpha^s \\ &= (X\eta(Y) - Y\eta(X) - \eta^s([\widetilde{p}\,X,\,\widetilde{p}\,Y]))/\alpha^s = d\eta(X,\,Y)/\alpha^s \end{split}$$

since η^s is horizontal. Thus we have that $\eta_{\bigwedge}(d\eta)^n = \eta_{\bigwedge}(\alpha^s \Phi)^n \neq 0$ and hence that P^{2n+1} has a normal contact metric structure with ξ regular.

Remark 1. While it is already clear that P^{2n+1} is a principal circle bundle over N^{2n} , it now also follows from the well-known Boothby-Wang and Morimoto fibrations.

Remark 2. Under the hypotheses of Theorem 3, it is possible to assume without loss of generality that α^x equals 0 or $1/\sqrt{t}$ where t is the number of nonzero α^x and hence there exist constants β_q^x , $q=1,\cdots,s-1$, such that $\overline{\eta}^q=\sum_x\beta_q^x\eta^x$ and $\overline{\eta}^s=\sum_x\alpha^x\eta^x$ are 1-forms with $d\overline{\eta}^q=0$ and $d\overline{\eta}^s=F$. Then $f,\overline{\eta}^x$ and the dual vector fields $\overline{\xi}_x$ again define a K-structure on M^{2n+s} . If now this K-structure is regular, then, since the distribution spanned by $\overline{\xi}_1,\cdots,\overline{\xi}_{s-1}$ and its complement are parallel, M^{2n+s} is a covering of the product of P^{2n+1} and a manifold P^{s-1} as in the proof of Theorem 2.

Remark 3. In [1] one of the authors gave the following example of an S-manifold as a generalization of the Hopf-fibration of the odd-dimensional sphere over complex projective space, $\pi': S^{2n+1} \to PC^n$. Let Δ denote the diagonal map and define a space H^{2n+s} by the diagram

$$H^{2n+s} \xrightarrow{\hat{\Delta}} S^{2n+1} \times \cdots \times S^{2n+1}$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

that is $H^{2n+s} = \{(P_1, \dots, P_s) \in S^{2n+1} \times \dots \times S^{2n+1} | \pi'(P_1) = \dots = \pi'(P_s) \}$ and thus H^{2n+s} is diffeomorphic to $S^{2n+1} \times T^{s-1}$. Further properties of the space H^{2n+s} are given in [1], [2].

If however the $d\eta^x$'s are independent then there can be no intermediate bundle P^{2n+t} over N^{2n} such that M^{2n+s} is trivial over P^{2n+t} .

Remark 4. If M^{2n+s} is as in Theorem 1 with the $d\eta^x$'s independent, then there is no fibration by s-t of the ξ_x 's yielding a principal toroidal bundle P^{2n+t} over N^{2n} such that $M^{2n+s} = P^{2n+t} \times T^{s-t}$. For suppose P^{2n+t} is such an intermediate bundle, then it is necessary that $\bigcap_{n \in \mathbb{Z}} \xi_x = 0$ (see e.g. [8]) and thus the η^x 's are parallel contradicting the independence of the $d\eta^x$'s.

5. Curvature. Let \tilde{R} and R denote the curvature tensors of $\overset{\sim}{\nabla}$ and ∇ respectively. Then

$$\begin{split} g(\overset{\sim}R_{XX}\overset{\sim}{\pi}_{X}\overset{\sim}{\pi}_{Y}\overset{\sim}Z},\overset{\sim}{\pi}_{W}) &= g(\overset{\sim}\nabla_{\overset{\sim}\pi_{X}}\overset{\sim}\nabla_{\overset{\sim}\pi_{Y}}\overset{\sim}\pi_{Z}}-\overset{\sim}\nabla_{\overset{\sim}\pi_{Y}}\overset{\sim}\nabla_{\overset{\sim}\pi_{X}}\overset{\sim}\pi_{Z}}-\overset{\sim}\nabla_{\overset{\sim}[\pi_{X},\widetilde{\pi}_{Y}]}\overset{\sim}\pi_{Z},\overset{\sim}\pi_{W}) \\ &= g(\overset{\sim}\nabla_{\overset{\sim}\pi_{X}}(\overset{\sim}\pi\nabla_{Y}Z+b^{x}(Y,Z)\xi_{x})-\overset{\sim}\nabla_{\overset{\sim}\pi_{Y}}(\overset{\sim}\pi\nabla_{X}Z+b^{x}(X,Z)\xi_{x}) \\ &-\overset{\sim}\nabla_{\overset{\sim}\pi_{Z}}(X,Y)-d\eta^{x}(\overset{\sim}\pi_{X},\widetilde{\pi}_{Y})\xi_{x}}\overset{\sim}\pi_{Z},\overset{\sim}\pi_{W}) \\ &= g(\overset{\sim}\pi\nabla_{X}\nabla_{Y}Z-b^{x}(Y,Z)\overset{\sim}\pi(H_{x}X)-\overset{\sim}\pi\nabla_{Y}\nabla_{X}Z+b^{x}(X,Z)\overset{\sim}\pi(H_{x}Y) \\ &-\overset{\sim}\pi\nabla_{[X,Y]}Z-d\eta^{x}(\overset{\sim}\pi_{X},\overset{\sim}\pi_{Y})\overset{\sim}\pi(H_{x}Z),\overset{\sim}\pi_{W}) \\ &= G(R_{XY}Z,W)-\sum_{x}(b^{x}(Y,Z)b^{x}(X,W)-b^{x}(X,Z)b^{x}(Y,W)+d\eta^{x}(\overset{\sim}\pi_{X},\overset{\sim}\pi_{Y})b^{x}(Z,W)) \\ &= G(R_{XY}Z,W)-\sum_{x}(b^{x}(Y,Z)b^{x}(X,W)-b^{x}(X,Z)b^{x}(Y,W)-2b^{x}(X,Y)b^{x}(Z,W)). \end{split}$$

In [1], one of the present authors developed a theory of manifolds with an f-structure of constant f-sectional curvature. This is the analogue of a complex manifold of constant holomorphic curvature. A plane section of M^{2n+s} is called an f-section if there is a vector X orthogonal to the distribution spanned by the \mathcal{E}_x 's such that $\{X, f\}$ is an orthonormal pair spanning the section. The sectional curvature of this section is called an f-sectional curvature and is of course given by $g(R_{Xf}X, f)$. M^{2n+s} is said to be of constant f-sectional curvature if the f-sectional curvatures are constant for all f-sections. This is an absolute constant. We then have the following theorem.

Theorem 5. If M^{2n+s} is a compact, connected manifold with a regular S-structure of constant f-sectional curvature c, then N^{2n} is a Kähler manifold of constant holomorphic curvature.

Proof. That N^{2n} is Kähler follows from Theorem 1. By definition there exist $\alpha^1, \dots, \alpha^s$, necessarily constant such that $\alpha^x F = d\eta^x$. If X is a unit vector on N^{2n} , then we have

$$G(R_{XJX}JX, X) = g(\widetilde{R}_{\widetilde{\pi}X\widetilde{\pi}JX}\widetilde{\pi}JX, \widetilde{\pi}JX)$$

$$+ \sum_{x} (\frac{1}{2}\alpha^{x}F(\widetilde{\pi}JX, \widetilde{\pi}JX)\frac{1}{2}\alpha^{x}F(\widetilde{\pi}X, \widetilde{\pi}X)$$

$$-\frac{1}{2}\alpha^{x}F(\widetilde{\pi}X, \widetilde{\pi}JX)\frac{1}{2}\alpha^{x}F(\widetilde{\pi}JX, \widetilde{\pi}X)$$

$$-2(\frac{1}{2})\alpha^{x}F(\widetilde{\pi}X, \widetilde{\pi}JX)\frac{1}{2}\alpha^{x}F(\widetilde{\pi}JX, \widetilde{\pi}X)$$

$$= c + \frac{3}{4}\sum_{x} (\alpha^{x})^{2}(F(\widetilde{\pi}X, f\widetilde{\pi}X))^{2}$$

$$= c + \frac{3}{4}\sum_{x} (\alpha^{x})^{2}, \text{ which is constant.}$$

Remark. This agrees with the results in [1] on H^{2n+s} . H^{2n+s} is a principal toroidal bundle over PC^n and PC^n is of constant holomorphic curvature equal to 1. Also, $\alpha^x = 1$ for $x = 1, \dots, s$ and H^{2n+s} was found to be of constant f-sectional curvature equal to 1 - 3s/4.

REFERENCES

- 1. D. E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differential Geometry 4 (1970), 155-167. MR 42 #2403.
- 2. ——, On a generalization of the Hopf fibration, An. Univ. "Al. I. Cuza" Iasi 17 (1971), 171-177.
- 3. W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. (2) 68 (1958), 721-734. MR 22 #3015.
- 4. S. S. Chern, On a generalization of Kähler geometry, Algebraic Geometry and Topology (A Sympos. in Honor of S. Lefschetz), Princeton Univ. Press, Princeton, N. J., 1957, pp. 103-121. MR 19, 314.
- 5. S. I. Goldberg, A generalization of Kähler geometry, J. Differential Geometry 6 (1972), 343-355.
- 6. S. I. Goldberg and K. Yano, On normal globally framed f-manifolds, Tôhoku Math. J. 22 (1970), 362-370.
- 7. A. Morimoto, On normal almost contact structures with a regularity, Tôhoku Math. J. (2) 16 (1964), 90-104. MR 29 #549.
- 8. B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. MR 34 #751.
- 9. R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957). MR 22 #12162.
- 10. A. G. Walker, The fibring of Riemannian manifolds, Proc. London Math. Soc. (3) 3 (1953), 1-19. MR 15, 159.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823